Package: MetaSubtract 1.60

MetaSubtract: Subtracting Summary Statistics of One or more Cohorts from Meta-GWAS Results

If results from a meta-GWAS are used for validation in one of the cohorts that was included in the meta-analysis, this will yield biased (i.e. too optimistic) results. The validation cohort needs to be independent from the meta-Genome-Wide-Association-Study (meta-GWAS) results. 'MetaSubtract' will subtract the results of the respective cohort from the meta-GWAS results analytically without having to redo the meta-GWAS analysis using the leave-one-out methodology. It can handle different meta-analyses methods and takes into account if single or double genomic control correction was applied to the original meta-analysis. It can also handle different meta-analysis methods. It can be used for whole GWAS, but also for a limited set of genetic markers. See for application: Nolte I.M. et al. (2017); <doi:10.1038/ejhg.2017.50>.

Authors:Ilja M. Nolte

MetaSubtract_1.60.tar.gz
MetaSubtract_1.60.zip(r-4.5)MetaSubtract_1.60.zip(r-4.4)MetaSubtract_1.60.zip(r-4.3)
MetaSubtract_1.60.tgz(r-4.4-any)MetaSubtract_1.60.tgz(r-4.3-any)
MetaSubtract_1.60.tar.gz(r-4.5-noble)MetaSubtract_1.60.tar.gz(r-4.4-noble)
MetaSubtract_1.60.tgz(r-4.4-emscripten)MetaSubtract_1.60.tgz(r-4.3-emscripten)
MetaSubtract.pdf |MetaSubtract.html
MetaSubtract/json (API)

# Install 'MetaSubtract' in R:
install.packages('MetaSubtract', repos = c('https://imnolte73.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 scripts 216 downloads 1 mentions 1 exports 0 dependencies

Last updated 5 years agofrom:f61d763e15. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:meta.subtract

Dependencies: